An exonuclease I hydrolysis assay for evaluating G-quadruplex stabilization by small molecules
نویسندگان
چکیده
Telomere length homeostasis is a prerequisite for the generation and growth of cancer. In >85% cancer cells, telomere length is maintained by telomerase that add telomere repeats to the end of telomere DNA. Because the G-rich strand of telomere DNA can fold into G-quadruplex that inhibits telomerase activity, stabilizing telomere quadruplex by small molecules is emerging as a potential therapeutic strategy against cancer. In these applications, the specificity of small molecules toward quadruplex over other forms of DNA is an important property to ensure no processes other than telomere elongation are interrupted. The evaluating assays currently available more or less have difficulty identifying or distinguishing quadruplex-irrelevant effect from quadruplex stabilization. Here, we describe an exonuclease I hydrolysis assay that evaluates quadruplex stabilization by DNA-interacting compounds, discriminates inhibitory effect from different sources and helps determine the optimal compound concentration.
منابع مشابه
Providing integrated health and social care for older persons: a European overview of issues at stake
Telomere length homeostasis is a prerequisite for the generation and growth of cancer. In 485% cancer cells, telomere length is maintained by telomerase that add telomere repeats to the end of telomere DNA. Because the G-rich strand of telomere DNA can fold into G-quadruplex that inhibits telomerase activity, stabilizing telomere quadruplex by small molecules is emerging as a potential therapeu...
متن کاملG-quadruplex preferentially forms at the very 3′ end of vertebrate telomeric DNA
Human chromosome ends are protected with kilobases repeats of TTAGGG. Telomere DNA shortens at replication. This shortening in most tumor cells is compensated by telomerase that adds telomere repeats to the 3' end of the G-rich telomere strand. Four TTAGGG repeats can fold into G-quadruplex that is a poor substrate for telomerase. This property has been suggested to regulate telomerase activity...
متن کاملA label-free G-quadruplex-based mercury detection assay employing the exonuclease III-mediated cleavage of T–Hg2+–T mismatched DNA
We report herein the use of an exonuclease III and G-quadruplex probe to construct a G-quadruplex-based luminescence detection platform for Hg2+. Unlike common DNA-based Hg2+ detection methods, when using the dsDNA probe to monitor the hairpin formation, the intercalation of the dsDNA probe may be influenced by the distortion of dsDNA. This 'mix-and-detect' methodology utilized the G-quadruplex...
متن کاملSynthesis of unimolecularly circular G-quadruplexes as prospective molecular probes.
Synthesis of unimolecularly circular G-quadruplex has been accomplished for the first time during our investigation on the template basis of G-quadruplex through chemical ligations of guanine-rich linear sequences of oligodeoxyribonucleotides. The uniqueness of this newly designed circularization course is its self-recognition and self-templating on the scale of individual strand of oligodeoxyr...
متن کاملA G-quadruplex-based Label-free Fluorometric Aptasensor for Adenosine Triphosphate Detection.
A G-quadruplex-based, label-free fluorescence assay was demonstrated for the detection of adenosine triphosphate (ATP). A double-stranded DNA (dsDNA), hybridized by ATP-aptamer and its complementary sequence, was employed as a substrate for ATP binding. SYBR Green I (SG I) was a fluorescent probe and exonuclease III (Exo III) was a nuclease to digest the dsDNA. Consequently, in the absence of A...
متن کامل